论文部分内容阅读
点插值法与其他无网格方法不同的是采用多项式近似来构造形函数, 这种形函数具有Kronecker delta函数的特性,因此,易于施加本质边界条件.本文研究了点插值法中以单项式为基函数的形函数的建立及其性质,并通过矩阵三角化算法来克服形函数矩阵大奇异性.同时,本文所给出的数值算例验证了形函数具有Kronecker delta函数的特性,说明了点插值形函数具有精确的曲线拟合特性并能通过分片试验.