论文部分内容阅读
交通流量数据具有非周期性、非线性和随机性等特点.为了更准确地对未设置ETC路段交通流量进行预测,采取相应措施处理交通拥堵问题,提出了基于神经网络推论模型为主体的交通流量预测系统.通过实验验证了ARIMA乘积季节模型、BP神经网络和RBF神经网络的多种训练函数的预测精度及适应性.相对于常规预测方法,基于神经网络的预测方法具有更好的适应性,而且预测精度也更高.