论文部分内容阅读
一、问题提出
新课改以来,沪教版教材倡导加减法或乘除法的互逆关系来解答方程。凡教授过现行沪教版《简易方程》章节的教师,都会遇到这样的教学现状:虽然利用加减法或乘除法的互逆关系学生能够解决形如X+12=47、(23+X+18)÷2=30简单或较复杂的一元一次方程;但一遇上类似X+6=3X两边带未知数的方程时,学生运用算术法来求解的过程明显有困难。
而且对学生而言,在小学阶段依据算术法解方程思想越巩固(沪教版教材从第七册开始,就要求学生运用四则运算关系熟练地求出方框中的未知数),这样的教学后果会造成学生到了初中后,方程教学的负迁移就越明显,入门障碍就越大。
所以引发笔者这样的思考:关于“等式性质”这一内容我们的课标是怎么规定的?其他版本的教材中是否出现“等式性质”这一内容?在小学五年级进行“等式性质”教学是否符合学生的认知特点?
二、研读与比较
基于上述所提问题,笔者进行了以下的实践:
(一)研读国家课程标准有关对“式与方程”的规定
《义务教育数学课程课标(2011版)》中提出“了解等式的性质,能够用等式的性质解简单的方程”。另外,对于解方程,《标准(2011版)》明确“用等式的性质解简单的方程”。等式的性质反映了方程的本质,将未知数和已知数同等看待,是代数思想的本质之一。开始从算术方法到代数方法可能显得繁琐,特别是对于简单的数量关系,算术的方法操作起来容易些,但在解简单方程时还是应当用等式性质,一方面体现代数的方法的本质,另一方面也是与第三学段(中学)学习方程的思路一致。
(二)比对沪教版一期课程标准与二期课程标准对“等式性质”内容的规定
通过比对沪教版两期的课程标准(如下表)(表略),我们不难发现对“等式性质”这一教学内容的规定,在一期课改时是放入小学阶段的,但到了二期课改就从小学阶段中移除了。由于课标的指向变化了,所以导致相应的教材亦是如此,一期课改的教材将“等式性质”这一内容编在了四年级第二学期中,二期课改教材就没有该内容了。
(三)查阅多种教材版本,比较其内容编排
在了解了《课标》规定后,查阅了人教版、苏教版、北师大版关于《简易方程》中解方程方法介绍的编排内容,又采集了沪教版关于这章的编写内容(如下表格)(表略),发现前三个版本都明确要求学生运用等式性质来解答方程,但我们沪教版还是要求学生运用算术法求解方程的。
通过比较,国家课程标准对“等式性质”放于小学阶段学习有明确规定,说明专家团队是建议在此学段进行“等式性质”学习的。另外,比较了国内具有代表性的多种版本教材对于“等式性质”的编写,和国家课程标准完全吻合。不禁自问:上海的课程标准没有这样的规定,小学阶段教材自然也就缺少“等式性质”这一内容了,可学生的实际学习情况又是十分需要这一知识。能不能在教学中将这一知识弥补进去?如果要补在什么地方比较适合呢?学生的实际学习情况又会如何?
三、课程内容的思考与调整
(一)思考
通过比较以上四个版本关于《简易方程---解方程》的编排,作为执教者会思考:像这种依据加减法或乘除法的互逆关系来解方程的方法,一到初中就会被“有理数运算律、消元“等方法取代。而且这些方法不利于中学所学的方程解法的延伸,对学生的后续学习也会产生干扰。竟然如此,在教学这个内容时,能不能借鉴其他三个版本的编排内容,紧紧围绕《课标(2011版)》将“等式性质”作为小学解方程的另一种方法呢?
(二)调整实施
在以上前期思考下,笔者主要借鉴北师大版对教材教学内容编排的基础上,重新的调整及补充了课程内容。具体调整补充如下表:(表略)
四、课程内容实施后的实际现象与效果
笔者按照上述的分析,将等式性质(一)与加减法关系、等式性质(二)与乘除法关系进行了融合,并分二个课时进行教学。
在课堂上,一开始学生解答形如:x+a=b,x-a=b,ax=b,x÷a=b(a≠0)未知数在一边的方程时都不愿意运用等式性质来求解。从四年级第一学期开始学生已经对运用算术法“求( )中的未知数”娴熟有加,在不断地操练中,学生积累了比较丰富的感性经验,形成了一定的解题定势,所以就算学生了解了等式性质,但他们的第一反应还是想到用加减法或乘除法的数量关系来求解,也是情理之中的事。
但当学生遇到“X+6=3X”一题时,他们的解法出现了分化的现象:近三分之一的学生将“6”看作是一个加数,把X看成是另一个加数,利用“一个加数=和-另一个加数”的数量关系求得了X的值;剩下的学生有一部分开始也想到了利用加减法关系来求解,因为始终出现“X=3X-6”或“3X-6=X”两边都带X的变式,无法成功地将未知数X移至等式一边而放弃旧方法,想到了等式性质这一新方法,有的学生提出质疑认为“此题不能解”。
面对学生不同的认知冲突,执教者将事先准备好的“利用等式性质具体解题的学习材料”以信封的形式提供给有需要的学生,让他们通过阅读学习材料来尝试独立解答。从课堂的实际反馈来看,在剩下的学生中多数学生能通过自学,成功的运用等式性质求得了未知数X的值。具体过程是:“X+6-X=3X-X,2X=6,X=3”。随后,又安排学生们对两种解法进行比较,最终得出选择适合自己和题目类型的解方程方法才是最佳方法的观点。
五、关于课程调整价值的思考
回顾本次有关沪教版《简易方程》课程内容的调整与实施过程。笔者通过两度比对课程标准、比较多种版本教材的相关编写,发现了“等式性质”这一教学内容在沪教版课程标准制定中的缺失和五年级小学生确有认知需求的问题。并在解决问题的过程中,有方向有根据的进行了教学内容的调整;在具体教学实施时,又基于学生的需求,提供匹配的自学素材,并利用比较的方法让学生体会到了等式性质的好处。这种基于广泛阅读比较之后解决教学问题的思维路径对教学研究有实用性价值,希望对同行教师也有一定的借鉴和启示作用。
新课改以来,沪教版教材倡导加减法或乘除法的互逆关系来解答方程。凡教授过现行沪教版《简易方程》章节的教师,都会遇到这样的教学现状:虽然利用加减法或乘除法的互逆关系学生能够解决形如X+12=47、(23+X+18)÷2=30简单或较复杂的一元一次方程;但一遇上类似X+6=3X两边带未知数的方程时,学生运用算术法来求解的过程明显有困难。
而且对学生而言,在小学阶段依据算术法解方程思想越巩固(沪教版教材从第七册开始,就要求学生运用四则运算关系熟练地求出方框中的未知数),这样的教学后果会造成学生到了初中后,方程教学的负迁移就越明显,入门障碍就越大。
所以引发笔者这样的思考:关于“等式性质”这一内容我们的课标是怎么规定的?其他版本的教材中是否出现“等式性质”这一内容?在小学五年级进行“等式性质”教学是否符合学生的认知特点?
二、研读与比较
基于上述所提问题,笔者进行了以下的实践:
(一)研读国家课程标准有关对“式与方程”的规定
《义务教育数学课程课标(2011版)》中提出“了解等式的性质,能够用等式的性质解简单的方程”。另外,对于解方程,《标准(2011版)》明确“用等式的性质解简单的方程”。等式的性质反映了方程的本质,将未知数和已知数同等看待,是代数思想的本质之一。开始从算术方法到代数方法可能显得繁琐,特别是对于简单的数量关系,算术的方法操作起来容易些,但在解简单方程时还是应当用等式性质,一方面体现代数的方法的本质,另一方面也是与第三学段(中学)学习方程的思路一致。
(二)比对沪教版一期课程标准与二期课程标准对“等式性质”内容的规定
通过比对沪教版两期的课程标准(如下表)(表略),我们不难发现对“等式性质”这一教学内容的规定,在一期课改时是放入小学阶段的,但到了二期课改就从小学阶段中移除了。由于课标的指向变化了,所以导致相应的教材亦是如此,一期课改的教材将“等式性质”这一内容编在了四年级第二学期中,二期课改教材就没有该内容了。
(三)查阅多种教材版本,比较其内容编排
在了解了《课标》规定后,查阅了人教版、苏教版、北师大版关于《简易方程》中解方程方法介绍的编排内容,又采集了沪教版关于这章的编写内容(如下表格)(表略),发现前三个版本都明确要求学生运用等式性质来解答方程,但我们沪教版还是要求学生运用算术法求解方程的。
通过比较,国家课程标准对“等式性质”放于小学阶段学习有明确规定,说明专家团队是建议在此学段进行“等式性质”学习的。另外,比较了国内具有代表性的多种版本教材对于“等式性质”的编写,和国家课程标准完全吻合。不禁自问:上海的课程标准没有这样的规定,小学阶段教材自然也就缺少“等式性质”这一内容了,可学生的实际学习情况又是十分需要这一知识。能不能在教学中将这一知识弥补进去?如果要补在什么地方比较适合呢?学生的实际学习情况又会如何?
三、课程内容的思考与调整
(一)思考
通过比较以上四个版本关于《简易方程---解方程》的编排,作为执教者会思考:像这种依据加减法或乘除法的互逆关系来解方程的方法,一到初中就会被“有理数运算律、消元“等方法取代。而且这些方法不利于中学所学的方程解法的延伸,对学生的后续学习也会产生干扰。竟然如此,在教学这个内容时,能不能借鉴其他三个版本的编排内容,紧紧围绕《课标(2011版)》将“等式性质”作为小学解方程的另一种方法呢?
(二)调整实施
在以上前期思考下,笔者主要借鉴北师大版对教材教学内容编排的基础上,重新的调整及补充了课程内容。具体调整补充如下表:(表略)
四、课程内容实施后的实际现象与效果
笔者按照上述的分析,将等式性质(一)与加减法关系、等式性质(二)与乘除法关系进行了融合,并分二个课时进行教学。
在课堂上,一开始学生解答形如:x+a=b,x-a=b,ax=b,x÷a=b(a≠0)未知数在一边的方程时都不愿意运用等式性质来求解。从四年级第一学期开始学生已经对运用算术法“求( )中的未知数”娴熟有加,在不断地操练中,学生积累了比较丰富的感性经验,形成了一定的解题定势,所以就算学生了解了等式性质,但他们的第一反应还是想到用加减法或乘除法的数量关系来求解,也是情理之中的事。
但当学生遇到“X+6=3X”一题时,他们的解法出现了分化的现象:近三分之一的学生将“6”看作是一个加数,把X看成是另一个加数,利用“一个加数=和-另一个加数”的数量关系求得了X的值;剩下的学生有一部分开始也想到了利用加减法关系来求解,因为始终出现“X=3X-6”或“3X-6=X”两边都带X的变式,无法成功地将未知数X移至等式一边而放弃旧方法,想到了等式性质这一新方法,有的学生提出质疑认为“此题不能解”。
面对学生不同的认知冲突,执教者将事先准备好的“利用等式性质具体解题的学习材料”以信封的形式提供给有需要的学生,让他们通过阅读学习材料来尝试独立解答。从课堂的实际反馈来看,在剩下的学生中多数学生能通过自学,成功的运用等式性质求得了未知数X的值。具体过程是:“X+6-X=3X-X,2X=6,X=3”。随后,又安排学生们对两种解法进行比较,最终得出选择适合自己和题目类型的解方程方法才是最佳方法的观点。
五、关于课程调整价值的思考
回顾本次有关沪教版《简易方程》课程内容的调整与实施过程。笔者通过两度比对课程标准、比较多种版本教材的相关编写,发现了“等式性质”这一教学内容在沪教版课程标准制定中的缺失和五年级小学生确有认知需求的问题。并在解决问题的过程中,有方向有根据的进行了教学内容的调整;在具体教学实施时,又基于学生的需求,提供匹配的自学素材,并利用比较的方法让学生体会到了等式性质的好处。这种基于广泛阅读比较之后解决教学问题的思维路径对教学研究有实用性价值,希望对同行教师也有一定的借鉴和启示作用。