论文部分内容阅读
支持向量机(SVM)算法在各类别样本数多少不同时,样本数量多的类别,其分类误差小,而样本数量少的类别,其分类误差大.针对这种倾向性问题,在分析其产生原因的基础上,提出了加权SVM算法,从而克服了常规SVM算法不能灵活处理每一个样本的缺陷,同时补偿了这种倾向性造成的不利影响.这种以牺牲大类别精度来提高小类别精度的加权支持向量机方法,可应用于诸如故障诊断等关注小类别分类精度的场合.户外图象识别的实验结果证明,该算法是有效的.