论文部分内容阅读
化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上,能够更好地提取数据的非线性结构。通过以田纳西-伊斯曼(TE)仿真过程为例,构造T2和SPE统计量进行故障检测,证明了KNPE方法比NPE和KPCA方法能够更快更准确的检测出非线性故障的发生。