一种基于CNN的航拍输电线路图像分类方法

来源 :应用科技 | 被引量 : 4次 | 上传用户:king943
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
输电线路场景的复杂程度较高,经典卷积神经网络对输电线路场景数据集的分类效果较差。为了解决这一问题,利用卷积神经网络的优势,提出了一种基于VGG-19的优化网络结构,并将此优化网络应用在输电线路场景数据集的分类中,优化网络的分类准确度为95.1%。实验结果表明本文提出的优化网络相较于经典的卷积神经网络有更好的分类效果。
其他文献
为了对高光谱图像中出现的混合像元进行分解,在分层解混方法的基础上从一个新的角度出发,提出了一种新的高光谱图像解混方法。该方法根据整体和部分之间的关系,首先利用各种地物的端元组对混合像元分别进行解混,然后利用根均方误差(RMSE)选出每个端元组中反演误差最小的那个端元。该方法可以降低计算的复杂度,有效地抑制噪声的影响,迭代次数减少了1 900次。
基于二维坐标的多运动目标跟踪,在跟踪过程中由于目标相互遮挡,算法无法分清各个运动目标,导致跟踪目标失败。而三维坐标具有深度信息,利用目标遮挡前后坐标的不突变性能很好地分清各个目标,为此提出基于三维坐标的运动目标跟踪方法。首先,采用背景差法进行目标检测;其次使用sift算法对目标特征提取,运用极线约束对目标特征点进行立体匹配以及三维重构并使用模糊C均值聚类算法(FCM),确定运动目标中心三维坐标;最