论文部分内容阅读
针对不确定时滞系统,在网络时滞范围已知情况下,采用改进PD型迭代学习控制算法补偿网络时滞.在初态是严格重复时,给出这类系统的极限轨迹和迭代输出收敛于该极限轨迹的充分条件.并与P型迭代学习控制算法进行比较.仿真结果表明改进后的PD型迭代学习控制算法能够有效地补偿此类时滞.当网络时滞范围变窄时,能够更加精确跟踪极限轨迹.在相同迭代次数情况下,PD型迭代学习控制算法比P型迭代学习控制算法能更快收敛于极限轨迹.