论文部分内容阅读
针对房产价格指数的预测问题,建立了混沌时间序列的支持向量机的非线性预测模型.首先运用Cao氏法进行相空间重构,并利用改进型小数据量法计算最大的Lyapunov指数,分析上海房产价格指数时间序列的混沌特性.然后以最小嵌入维数作为支持向量机的输入节点,建立房地价格指数的预测模型.实例表明,该方法能较好地处理复杂的房地产数据,具有较高的泛化能力和很好的预测精度.