论文部分内容阅读
针对大气环境的复杂多变性和不确定性,采用太原市2014年至2016年的空气污染物监测数据,分别将改进的粒子群算法(IPSO)和遗传算法(GA)与支持向量机(SVM)相结合,通过参数寻优构建新模型完成对空气质量指数(AQI)的预测.实验结果表明,GA-SVM在预测精度、误差率和可靠性方面均优于IPSO-SVM与SVM.因此GA-SVM模型更适用于AQI的预测,为大气污染防治提供了科学合理的理论依据和新的预测方法.
Aiming at the complexity and uncertainty of the atmospheric environment, air pollutant monitoring data from Taiyuan City from 2014 to 2016 were used. The improved particle swarm optimization (IPSO), genetic algorithm (GA) and support vector machine (SVM) (AQI) is constructed through parameter optimization.The experimental results show that GA-SVM is superior to IPSO-SVM and SVM in terms of prediction accuracy, error rate and reliability.Therefore, GA- The SVM model is more suitable for the prediction of AQI and provides a scientific and reasonable theoretical basis and a new forecasting method for the prevention and control of atmospheric pollution.