论文部分内容阅读
为了解决宽基线多图匹配中匹配效率低和匹配精度不高的问题,使用经典的SIFT特征作为描述子,提出一种新的高维特征搜索算法.采用基于距离尺度的相似性度量准则,首先将图像高维特征集合分类,然后为每一个类建立B+Tree索引,最后在KNN(K Nearest Neighbor)搜索阶段应用基于关键维过滤的查找策略,实现高维特征的快速匹配.实验结果表明,与经典的BBF和LSH等KNN搜索算法相比较,关键维过滤搜索算法具有更高的搜索效率和搜索精度,有助于提升宽基线多图匹配性能.