论文部分内容阅读
为了解决高效全局优化算法(EGO)中迭代次数增多时构建Kriging模型速度过慢,以及对于某些响应值变化范围较大的目标函数出现过早收敛的问题,提出了增量Kriging方法和基于此方法的改进EGO算法.增量方法利用已经得到的关联矩阵的逆矩阵和新增的数据点忽略关联系数优化的过程,直接进行一系列矩阵运算,得到新关联矩阵的逆矩阵,进而得到更新后的预测模型.改进的EGO算法使用上述的增量方法和更加严谨的停止规则,包括改善期望、自变量和响应值的停止准则.最后使用标准函数分别对增量方法和EGO算法进行测试,结果表