论文部分内容阅读
将已有的不确定性测度概念引入到了悲ukasiewicz命题逻辑中的全体赋值之集上,然后利用McNaughton函数关于该不确定性测度的Choquet积分定义了命题的Choquet积分真度概念。证明了当赋值空间上的不确定性测度满足有限可加性时Choquet积分真度函数就具有良好性质,由此可诱导出命题集上的一个伪距离,进而可建立逻辑度量空间并展开程度化推理,特别是证明了当赋值空间上的不确定性测度取为Borel概率测度时Choquet积分真度函数就退化为概率计量逻辑中的Borel概率真度函数。本文是已有命题逻辑概率计量化工作的继续与深入,为表示逻辑命题间不确定性的非线性关系提供了一种推理框架。