论文部分内容阅读
Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land.This resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals.At present,several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan.This will be the largest hydroelectric power plant in Africa.The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network.The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins.To assess model performance,the estimated sediment loads were compared to the measured ones at selected locations.For the gauged sub-basins,water flows and sediment loads were derived from the available flow and sediment data.To fill in knowledge gaps,this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries.The comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim,near the Ethiopian Sudanese border,show that the sediment budgets have the right order of magnitude,although some uncertainties remain.This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.
Rapid population growth in the upper Blue Nile basin has led to fast land-use changes from natural forest to agricultural land. The resulted in speeding up the soil erosion process in the highlands and increasing sedimentation further downstream in reservoirs and irrigation canals. At present, several dams are planned across the Blue Nile River in Ethiopia and the Grand Ethiopian Renaissance Dam is currently under construction near the border with Sudan. This will be the largest hydroelectric power plant in Africa. The objective of this paper is to quantify the river flows and sediment loads along the Blue Nile River network.The Soil and Water Assessment Tool was used to estimate the water flows from un-gauged sub-basins. To assess model performance, the estimated sediment loads were compared to the measured ones at selected locations. For the gauged sub-basins, water flows and sediment loads were derived from the available flow and sediment data. To fill in knowledge gaps, this study included a field survey in which new data on suspended solids and flow discharge were collected along the Blue Nile and on a number of tributaries. the comparison between the results of this study and previous estimates of the sediment load of the Blue Nile River at El Deim, near the Ethiopian Sudanese border, show that the sediment budgets have the right order of magnitude, although some uncertainties remain. This gives confidence in the results of this study providing the first sediment balance of the entire Blue Nile catchment at the sub-basin scale.