论文部分内容阅读
提出一个单幅人脸图像的超分辨率重构算法。该算法建立在马尔可夫网络模型的基础上,引入了语义相似度的学习,将学习的范围限定在位置相关的特征语义区域,提升了学习算法的效率以及重构图像时的逼真性;重构算法中引入了权值融合机制,提升了输出图像的高频成分,有效地改善了图像的全局效果。分析和实验表明,该算法能在大容量训练集中,快速学习到有价值的图像信息,并且在图像的复原的过程中有效地抑制了图像失真现象,极大地改善了超分辨率图像的质量。