论文部分内容阅读
针对模糊识别系统的不足,为了提高辐射源识别系统的识别正确率,构建了基于模糊RBF神经网络的辐射源识别系统,提出了一种等价型模糊RBF神经网络的结构和学习算法,采用五层神经网络结构来实现模糊系统的模糊化和规则推理,神经网络的所有节点和参数对应了模糊系统的隶属函数和推理过程。在仿真实验中,分别采用模糊识别系统、并联型模糊RBF神经网络、结构等价型模糊RBF神经网络进行辐射源识别,给出了三种算法在相同噪声环境下的仿真结果,表明等价型模糊RBF效神经网络有较高的正确识别率,具有更强的抗干扰能力,但运算量相对较大。