论文部分内容阅读
The Changjiang Estuary has been considered as one of the most polluted estuaries in the world due to high nitrate (NO-3) input, especially in spring and summer. In this study, δ15N and δ18O of NO-3 , along with other chemical parameters in this area, were measured in spring to evaluate NO-3 biogeochemical processes. A simple two end-members mixing model was used to examine the relative contribution of the Changjiang River Diluted Water and marine water to NO-3 sources in the Changjiang Estuary and the adjacent East China Sea. The isotopic signals show that NO-3 behaved relatively and conservatively in Transect F and Transect P where assimilation was weak possibly due to vertical mixing, while active assimilation and weak nitrification occurred in Transect D. Spatial difference in assimilation was indicated by the~1:1 enrichment of δ15N and δ18O in the three transects, while spatial difference in nitrification was reflected by deviations of δ15 N and δ18O from assimilation line. Our results suggest that the input of the Changjiang River Diluted Water promoted NO-3 assimilation possibly by stratifying the water column which favored the phytoplankton growth.
The Changjiang Estuary has been considered as one of the most polluted estuaries in the world due to high nitrate (NO-3) input, especially in spring and summer. In this study, δ15N and δ18O of NO-3, along with other chemical parameters in this area, were measured in spring to evaluate NO-3 biogeochemical processes. A simple two end-members mixing model was used to examine the relative contribution of the Changjiang River Diluted Water and marine water to NO-3 sources in the Changjiang Estuary and the adjacent East China Sea. The isotopic signals show that NO-3 behaved relatively and conservatively in Transect F and Transect P where assimilation was weak likely due to vertical mixing, while active assimilation and weak nitrification occurred in Transect D. Spatial difference in assimilation was indicated by the ~ 1: 1 enrichment of δ15N and δ18O in the three transects, while spatial difference in nitrification was reflected by deviations of δ15N and δ18O from assimilation line. Our results suggest that the input of the Changjiang River Diluted Water promoted NO-3 assimilation possibly by stratifying the water column which favored the phytoplankton growth.