论文部分内容阅读
To study the seismic responses produced by gas hydrate bubble plumes in the cold seepage active region, we constructed a plume water body model based on random medium theory and acoustic velocity model of bubble medium. The plume water body model was forward simulated by finite difference. Seismic records of single shot show the scattered waves produced by the plume. The scattered wave energy is strong where the plume exists. Where the scattered wave energy is stronger, the minimum of travel time is always above the plume, which has no relationship with the shot’s position. Seismic records of shot gathers were processed by prestack time migration. The migration section shows that the scattered waves produced by plumes can be imaged distinctly with higher accuracy. These researches laid a foundation for further study on the seismic responses produced by plumes and provided a new approach for the identification of gas hydrate.
To study the seismic responses produced by gas hydrate bubble plumes in the cold seepage active region, we constructed a plume water body model based on random medium theory and acoustic velocity model of bubble medium. The plume water body model was forward simulated by finite difference. Seismic records of single shot show the scattered waves produced by the plume. The scattered wave energy is strong where the plume exists. The the minimum of travel time is always above the plume, which has no relationship with the shots position; Seismic records of shot gathers were processed by prestack time migration. The migration section shows that the scattered waves produced by plumes can be imaged distinctly with higher accuracy. These researches laid a foundation for further study on the seismic responses produced by plumes and provided a new approach for the identification of gas hydrate.