【摘 要】
:
针对高速公路场景下的车辆目标检测问题,提出了一种改进的YOLOv4网络对交通场景下车辆目标进行检测的方法;制作了一个多天候、多时段、多场景的车辆目标数据集,并依据数据集得到检测模型;提出多标签检测方法,并在多标签之间建立约束关系,得到更完善的车辆信息;提出了一个图像拼接检测方法,将多幅图像通过拼接层连接后进行车辆检测,以此提升网络的运行效率。实验结果表明,多样化数据集提高了车辆检测精度,减少了车辆
【基金项目】
:
国家自然科学基金(6207072223,6200022622)。
论文部分内容阅读
针对高速公路场景下的车辆目标检测问题,提出了一种改进的YOLOv4网络对交通场景下车辆目标进行检测的方法;制作了一个多天候、多时段、多场景的车辆目标数据集,并依据数据集得到检测模型;提出多标签检测方法,并在多标签之间建立约束关系,得到更完善的车辆信息;提出了一个图像拼接检测方法,将多幅图像通过拼接层连接后进行车辆检测,以此提升网络的运行效率。实验结果表明,多样化数据集提高了车辆检测精度,减少了车辆目标的误检、漏检,同时改进的网络结构较大提升了检测速度,上述方法可以为高速公路场景下的车辆目标检测与实际
其他文献
摘要:为合理设计肋板外保温结构2层保温材料的厚度,采用稳态热平衡理论计算初步确定厚度方案,采用Abaqus软件对外保温结构进行仿真分析,结果认为规则部位内保温层与外保温层之间的界面温度满足工程要求,验证理论计算的合理性。保温层圆角过渡部位内保温层与外保温层之间界面温度不满足设计要求,采用Abaqus优化模块对局部尺寸进行优化计算,确定该部位2层保温材料的厚度分布,得到满足设计要求的外保温层厚度组合
为满足实际应用对卷积神经网络(CNN)推理的低时延、小体积和高吞吐率等要求,设计了一个采用如下优化方法的加速器:针对外存访问带宽限制,基于设计空间探索确定循环分块因子以最大化数据重用;针对CNN计算密度高,采用循环展开技术充分挖掘四种计算并行度;内存池、乒乓缓存和动态数据量化等技术用于管理片内外存储资源。将生成加速器流程封装为CNN加速框架;采用生成的加速器实现了AlexNet网络,仿真结果表明,该设计最高可达1 493.4 Gops的计算峰值,是被比较工作的多达24.2倍,DSP效率也超过了其他设计方法
近年全球的疫情促使生物识别技术进一步发展,指静脉识别作为第二代生物识别技术因其具有极高的安全性等优点而被应用于各个领域。指静脉图像感兴趣区域提取作为指静脉识别系统至关重要的一部分,是识别系统性能与适应不同应用场景的保证。分别介绍了商用指静脉识别产品与科研用指静脉采集设备,对其公开数据集进行了整理与分析;重点论述了指静脉图像预处理中感兴趣区域提取的主要工作,对各个步骤的代表性方法进行了深入梳理与分析
近年来,并行化洪水演进模拟技术发展迅速,在防汛减灾领域发挥重要作用。在考虑洪水演进模型的数值方法、并行模式和编程技术等因素后,选取一些有代表性的洪水演进模型,分析了同构并行和异构并行洪水演进模型涉及的技术细节,提出并行化模型开发的技术难点和解决方法。最后,提出将来并行化洪水演进模型研发的着力点:非结构网格模型的异构并行化;混合并行的洪水演进模型;适于GPU异构并行的网格形式;并行环境下的实时可视化和交互式计算;基于动态编程语言的模型开发;界面式开发及模型应用推广。
视觉多目标跟踪是计算机视觉领域的热点问题,然而,场景中目标数量的不确定、目标之间的相互遮挡、目标特征区分度不高等多种难题导致了视觉多目标跟踪现实应用进展缓慢。近年来,随着视觉智能处理研究的不断深入,涌现出多种多样的深度学习类视觉多目标跟踪算法。在分析了视觉多目标跟踪面临的挑战和难点基础上,将算法分为基于检测跟踪(Detection-Based-Tracking,DBT)、联合检测跟踪(Joint-
水下图像是海洋信息的重要载体,由于水下环境十分复杂,原始水下图像常常具有大量噪声,对后续的检测任务造成影响,因此水下图像预处理成为当前研究的热点。为了深入分析国内外学者对深度学习驱动的水下图像预处理研究进展,对近年来国内外相关文献进行总结分析。介绍了两类传统水下图像预处理方法,并分析其优缺点;根据是否结合物理模型,分析了深度学习驱动的水下图像预处理方法,并将相关方法进行对比总结;分析了深度学习方法
数据挖掘与机器学习技术日益趋向成熟并且被广泛应用于实际问题的处理中,但该领域仍面临着诸多挑战,如不平衡数据集分类问题。利用过采样技术处理这类问题时,通常只考虑数量的不平衡,而不考虑数据分布是否平衡。利用信息熵度量数据集的局部密度信息,从分布上考虑数据集的不平衡程度,并提出了基于熵的危险集的概念和它的三种使用策略,即基于熵的危险集过采样算法、基于熵的安全集过采样算法和基于熵的自适应过采样算法。竞争性的实验结果表明,这些算法可以有效提升经典过采样算法的性能,为进一步利用信息熵理论研究不平衡数据集提供了成功的实
综述了基于机器学习的遥感图像超分辨重建技术的研究和发展。基于机器学习的遥感图像超分辨率重建技术通过学习低分辨图像与高分辨图像之间映射的关系,提升遥感图像的空间分辨率,从而有助于遥感图像的视觉分析。根据数据表达方法的不同将基于机器学习的遥感图像超分辨方法分为两类,包括基于字典学习的方法和基于深度学习的方法;简述了各类方法针对的问题,分析其设计思路和实现原理;对各类方法的优缺点和性能指标进行了对比分析
伴随自然语言处理快速发展,自动问答系统(Question&Answer,QA)受到研究者的广泛关注。基于表格的自动问答(Table QA)实质是在给定自然语言形式的问题文本条件下,利用表格知识库信息进行查询推理得到答案的过程。从语义解析方法角度分析了基于表格知识库的问答模型、算法特点及其相关问题,同时结合人工智能技术的发展,重点探讨了表格自动问答技术的难点以及未来可能的挑战。
基于骨骼的动作识别因不受人体物理特征的影响,简单清晰地传达了人体行为识别的重要信息而受到广泛关注。传统的应用程序骨架建模通常依赖遍历规则的人为设置而导致表达能力有限和推广困难。因此,在近年来热门的时空图卷积网络(ST-GCN)模型基础上提出了一种新的划分骨架关节点的分区策略。该策略相比于原始分区方法加强了身体相对位置之间的关系,从而有利于提高骨架关节点信息在时间和空间上的关联。与此同时,在训练过程