Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor

来源 :生物设计与制造(英文版) | 被引量 : 0次 | 上传用户:LIKE0610
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Conductive and transparent dipeptide hydrogels are desirable building blocks to prepare soft electronic devices and wearable biosensors due to their excellent biocompatibility,multi-functionality,and physiochemical properties similar to those of body tissues.However,the preparation of such hydrogels featuring high conductivity and transparency is a huge challenge because of the hydrophobic feature of conductive additives making the doping process difficult.To overcome this issue,hydrophilic conductive polydopamine (PDA)-doped polypyrrole (PPy) nanoparticles are introduced into the dipeptide hydrogel networks to form conductive nanofibrils in situ to achieve a good level of hydrophilic templating of the hydrogel networks.This tech-nique creates a complete conductive network and allows visible light to pass through.The strategy proposed herein not only endows the dipeptide hydrogel with good conductivity and high transparency,but also provides a great potential application of conductive dipeptide hydrogels for body-adhered signal detection,as evidenced by the experimental data.
其他文献
水溶性离子是固、液气溶胶的重要组成部分,对于气溶胶的理化性质和空气质量具有重大影响,研究水溶性离子的含量对于大气环境的污染与防治具有深远意义.该研究建立了一种滤膜冷凝收集-离子色谱技术采集固体气溶胶和液体气溶胶并测定其中的5种水溶性阴离子(Cl-、F-、NO3-、NO2-、SO42-)含量的方法.首先,采用固体颗粒过滤器和冷凝收集法分别收集固体气溶胶和液体气溶胶,固体气溶胶以固体颗粒物的形式被收集在固体颗粒过滤器内,液体气溶胶以冷凝液的形式在冷阱中被收集.其次,以离子色谱法对固、液体气溶胶中的水溶性阴离子
The development of smart bioelectronics and biomedical devices has significantly advanced the field of biomedi-cal engineering,enabling a myriad of applications from basic biomedical research to clinical medicine and implants.Standing at the intersection
期刊
设计制作了一套用于气相色谱-质谱(GC-MS)分析极性有机物的在线衍生装置,并将其应用于大气颗粒物样品中极性有机物的检测.将大气颗粒物滤膜样品置于GC-MS进样口,通过使用套针组件,匀速引入气态衍生试剂N-甲基-Ⅳ-(三甲基硅烷)三氟乙酰胺(MSTFA),使其在衬管内于310℃下与待测物接触,10 min即可完成硅烷化在线反应.反应过程中,色谱柱箱保持低温,衍生产物得以在柱头保留,反应完成后色谱柱箱程序升温,使衍生产物直接进行后续分离检测.应用在线衍生装置建立有机酸分析方法,获得了一元酸、二元酸、芳香酸、
Peripheral nerve injury and nerve conduit manufacturingrnThe global nerve injury repair and regeneration market is expected to reach $9.7 billion by 2025,a compound annual growth rate of 9.1% between 2020 and 2025 [1].One com-ponent alone,peripheral nerve
期刊
Sweat,as a biofluid with the potential for noninvasive collection,provides profound insights into human health conditions,because it contains various chemicals and information to be utilized for the monitoring of well-being,stress levels,exercise,and nutr
The fields of regenerative medicine and tissue engineering offer new therapeutic options to restore,maintain or improve tissue function following disease or injury.To maximize the biological function of a tissue-engineered clinical product,specific condit
IntroductionrnDespite the numerous breakthroughs made in medical and biomedical technologies,biosensing underneath the skin without any associated pain still sounds like a dream yet to be realized.rnMinimally invasive biosensors refer to functional or ele
期刊
Since the start of the Precision Medicine Initiative by the United States of America in 2015,interest in personalized medi-cine has grown extensively.In short,personalized medicine is a term that describes medical treatment that is tuned to the individual
The multidisciplinary research field of bioprinting combines additive manufacturing,biology and material sciences to cre-ate bioconstructs with three-dimensional architectures mimicking natural living tissues.The high interest in the possibility of reprod
In the past few decades,robotics research has witnessed an increasingly high interest in miniaturized,intelligent,and inte-grated robots.The imperative component of a robot is the actuator that determines its performance.Although traditional rigid drives