论文部分内容阅读
针对飞行器关键部件的多源变量数据统计信息,提出基于多源信息融合的相似性剩余寿命预测方法。介绍了相似性剩余寿命预测方法的基本思想和模型;提出一种使用BP神经网络融合多变量统计数据的方法;引入余弦相似度方法,将服役部件和参考部件退化模型进行模式匹配,确定与服役部件具有相同退化模式的参考部件,进而提高基于相似性剩余寿命预测方法的预测精度。通过NASA航空发动机数据集和相同评价指标下的对比分析,验证了该方法的有效性。