论文部分内容阅读
Glutamate-induced excitotoxicity plays a critical role in the neurological impairment caused by middle cerebral artery occlusion. Achyran-thes bidentata polypeptides have been shown to protect against neurological functional damage caused by middle cerebral artery occlusion, but the underlying neuroprotective mechanisms and the relationship to glutamate-induced excitotoxicity remain unclear. Therefore, in the current study, we investigated the protective effects of Achyranthes bidentata polypeptides against glutamate-induced excitotoxicity in cultured hippocampal neurons. Hippocampal neurons were treated with Mg2+-free extracellular solution containing glutamate (300 μM) for 3 hours as a model of glutamate-mediated excitotoxicity (glutamate group). In the normal group, hippocampal neurons were incu-bated in Mg2+-free extracellular solution. In the Achyranthes bidentata polypeptide group, hippocampal neurons were incubated in Mg2+-free extracellular solution containing glutamate (300 μM) and Achyranthes bidentata polypeptide at different concentrations. At 24 hours after exposure to the agents, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Hoechst 33258 staining were used to assess neuronal viability and nuclear morphology, respectively. Caspase-3 expression and activity were evaluated using west blot assay and colorimetric enzymatic assay, respectively. At various time points after glutamate treatment, reactive oxygen species in cells were detected by H2DCF-DA, and mitochondrial membrane potential was detected by rhodamine 123 staining. To examine the effect of Achy-ranthes bidentata polypeptides on glutamate receptors, electrophysiological recording was used to measure the glutamate-induced inward current in cultured hippocampal neurons. Achyranthes bidentata polypeptide decreased the percentage of apoptotic cells and reduced the changes in caspase-3 expression and activity induced by glutamate. In addition, Achyranthes bidentata polypeptide attenuated the ampli-tude of the glutamate-induced current. Furthermore, the glutamate-induced increase in intracellular reactive oxygen species and reduction in mitochondrial membrane potential were attenuated by Achyranthes bidentata polypeptide treatment. These findings collectively suggest that Achyranthes bidentata polypeptides exert a neuroprotective effect in cultured hippocampal neurons by suppressing the overactivation of glutamate receptors and inhibiting the caspase-3-dependent mitochondrial apoptotic pathway. All animal studies were approved by the Animal Care and Use Committee, Nantong University, China (approval No. 20120216-001) on February 16, 2012.