论文部分内容阅读
基于概率的贝叶斯分类器以其简单的结构和良好的性能受到重视,树扩展朴素贝叶斯分类器TANC应用较广。用TANC—BIC结构学习算法构建的分类器取得了成功,但TANC—BIC结构学习算法未考虑类节点的情况。文中提出了一种新的结构学习TANC—CBIC算法。并在贝叶斯分类器实验平台MBNC上编程实现。实验结果表明,改进算法分类准确率要高于由TANC—BIC和TANC-CMI结构学习算法构建的分类器,TANC—CBIC结构学习算法是有效的。