微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究

来源 :化学学报 | 被引量 : 0次 | 上传用户:sidney1221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
采用微波诱导组装,先将Cu纳米线硫化成空心CuS纳米管,再将片状MoS2均匀插层并组装在CuS纳米管表面上,形成CuS@MoS2核壳纳米管,用于可见光(λ>420 nm)催化类芬顿反应降解高浓度污染物罗丹明B(RhB),30 min内降解率达100%.高活性归因于MoS2独特的多层次结构增加了催化剂对光的吸收,提高了光利用率.同时,MoS2与CuS之间形成的异质结结构有利于光生电子的转移,抑制了光生载流子的复合.更为重要的是构建了光催化与类芬顿反应的协同作用机制,光催化组分CuS中的铜离子与双氧水作用构成类芬顿循环体系并生成羟基自由基(·OH),光生电子一方面与双氧水反应生成·OH,另一方面与MoS2活化的分子氧反应产生超氧自由基(·O2-),·OH和·O2-协同氧化污染物,可大幅度提高污染物去除效率.本工作开发的可循环光催化-芬顿反应体系,为实际污染治理开辟了新途径.
其他文献
钴锰氧化物(CMO)具有安全无毒、价格便宜、活性位点多等优点,是极具潜力的锌离子电池正极材料.目前,充放电过程中电极材料溶解造成的结构坍塌成为限制其发展的瓶颈问题.本工
采用溶剂热法和溶胶-凝胶法制备了顺磁性Fe3O4@SiO2颗粒,以Pickering乳液界面保护法实现颗粒表面分区获得Fe3O4@SiO2 Janus颗粒,进一步选区复合生长Pt或Ag纳米颗粒制备Fe3O4@
鸡西矿业集团公司张辰煤矿西三采区3
期刊
由于具有特殊的电子结构和独特的反应性,低价锕系配合物已得到广泛关注.目前,实验中得到的可分离、晶体结构确定的+2锕系元素配合物少之又少.本工作通过相对论密度泛函理论探
一氧化氮(NO)是一种普遍存在的生理信号分子,但利用NO作为触发方法来精细调节仿生聚合物的自组装行为的研究却很少.本工作报道一种独特的具有一氧化氮(NO)反应特性的新型pH响
CO2的固定和转化具有重要研究意义,特别是采用廉价且良好生物相容性的金属催化剂将其转化为有用的有机化合物.本工作报道采用商品化ZnEt2 (1.0 mol%)可促进CO2的硅氢化反应生
期刊
共轭高分子材料由于其优异的光电性能和可溶液加工等特性在有机光电器件中具有重要应用.本工作采用Stille偶联和Suzuki聚合反应,合成了两个由经典发光基元苯乙烯片段和共轭吸