论文部分内容阅读
快速有效检测农作物病理对于农业具有重大的意义,不仅能提高自动化识别病理效率,还可以提高农作物产量。以土豆、番茄等农作物作为病理研究对象,提出一种基于卷积神经网络的农作物病理分类模型MFCPNet。首先构建深度卷积神经网络模型,分别通过卷积层、激活层、池化层全连接层进行组建,然后将提取到的图像病理特征进行多特征融合,从而有效增强农作物病理的特征丰富度。同时对原数据集进行数据增强从而消除样本分布不均的问题。结果表明,所提出农作物病理分类模型的各项标准均优于AlexNet、VGG16、VGG19模型,达到