论文部分内容阅读
研究二阶锥规划的预估校正内点法.该算法在预估步将中心路径的邻域放大两倍,使得沿着迭代方向可以让对偶间隙有一个较大的缩减,而在校正步采用修正的牛顿方向,使得校正步不仅将迭代点重置于一个更小的邻域,同时还对对偶间隙有一个常数因子的缩减.证明了算法只需迭代O(√nln(x0^Tx0/ε))次就可找到问题的ε-近似解.