论文部分内容阅读
建立了一种基于支持向量机的不等时距灰色组合预测模型.利用各种不等时距灰色模型的预测结果作为支持向量机的输入,实测值作为支持向量机的输出,并采用LS-SVM回归算法和高斯核函数对支持向量机进行训练,利用训练好的支持向量机即可进行组合预测.该模型兼具灰色模型所需原始数据少、建模简单、运算方便的优势和最小二乘支持向量机具有泛化能力强、非线性拟合性好、小样本等特性,弥补了单一不等时距预测模型的不足,避免了神经网络组合预测易于陷入局部最优的弱点.模型结构简单、实用,仿真结果验证了其有效性.