论文部分内容阅读
传统的人工神经网络数据编码算法需要离线训练且编码速度慢,因此通常多用于专用有损编码领域如声音、图像编码等,在无损数据编码领域应用较少。针对这种现状,该文详细地研究了最大熵统计模型和神经网络算法各自的特点,提出了一种基于最大熵原理的神经网络概率预测模型并结合自适应算术编码来进行数据压缩,具有精简的网络结构的自适应在线学习算法。试验表明,该算法在压缩率上可以优于目前流行的压缩算法Limpel-Zip(zip,gzip),并且在运行时间和所需空间性能上同PPM和Burrows Wheeler算法相比也是颇具竞争