论文部分内容阅读
基于传统主元分析(PCA)方法的过程监测算法假定过程是线性的,对于具有强非线性的生产过程,应用其进行在线监测出现误报率过高的现象.为此提出了一种多向核主元分析(MKPCA)算法用于间歇过程的建模与在线监测.利用PenSim2.0软件将青霉素间歇生产过程的三向数据按批次方向展开为二向数据并进行标准化,采用MKPCA算法建立过程模型并用于过程的在线监测,计算T^2、SPE统计量及相应的控制限.仿真结果表明,与传统PCA算法相比,MKPCA算法具有更好的监测性能,不仅大大降低了正常运行过程的误报率,而且能够较早