论文部分内容阅读
Aluminizing coating and aluminizing-dispersed Y 2O 3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ℃ in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y 2O 3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by dispersed Y 2O 3, etc.
Aluminizing coating and aluminizing-dispersed Y 2O 3 composite coating were prepared on 20 steel specimens by pulsed spark technique, which exhibited a micro-crystallized structure with grain size in the range of several ten to several hundred nanometers. It is shown that, after oxidation at 600 ° C in air for 100 h, these two kinds of coatings have excellent resistance to high temperature oxidation and scale spallation, and the aluminizing-dispersed Y 2O 3 composite coating has even better property than the aluminizing coating. AFM, SEM, EDS and XRD were applied to analyze the surface morphology, composition and phases structure of these coatings and the oxide scale formed in oxidation. The mechanism for these coatings that how to enhance the oxidation resistance and scale spallation resistance was discussed by considering the factors, such as as Al concentration on the selective oxidation of Fe-Al alloy, the effect of micro-crystallization, reactive element effect (REE) caused by di spersed Y 2O 3, etc.