论文部分内容阅读
针对在三维点云环境下分离目标物体所出现的过度分割问题,提出一种结合随机抽样一致性和颜色差值区域聚类的分割方法。首先利用RANSAC算法去除场景中大部分平面,使得目标物体和连成片的点云脱离,然后结合点云的距离阈值和目标颜色差值,得到目标点云数据。针对L_1中值算法对曲率较大模型的骨架提取存在的不足,进行了改进。通过L_1中值算法对点云模型进行骨架提取,得到点云的骨架点,然后沿端点方向向外进行最大内切球的球心提取,最后连接多个球心及骨架末端点,得到符合人类视觉效果的骨架。改进的算法提高了L_1中值对曲率