论文部分内容阅读
为解决环氧树脂(Epoxy)热膨胀系数较大、热导率较低的问题,我们通过固相反应法制备了巨负膨胀材料Mn_(0.983)CoGe,并将不同体积分数的Mn_(0.983)CoGe粉末(平均颗粒直径~10μm)均匀分散至Epoxy中,制备成Mn_(0.983)CoGe/Epoxy复合材料.研究结果表明仅需加入体积分数为22.5vol.%的Mn_(0.983)CoGe,复合材料即在267 K~320K的温度区间内呈现近零的热膨胀系数.并且,Mn_(0.983)CoGe/Epoxy复合材料的热导率也随着Mn_(0.983)CoGe填充量的增加而显著提升.例如当复合材料中Mn_(0.983)CoGe填充量为30vol.%时,其150K处的热导率提升近3倍.此外,我们还发现,在与Epoxy复合之后,由于受到Epoxy基体产生的应力的影响,Mn_(0.983)CoGe磁结构相变温区展宽,同时六角相到正交相的转化率也显著降低.
In order to solve the problem of larger coefficient of thermal expansion and lower thermal conductivity of Epoxy, we prepared Mn_ (0.983) CoGe, a giant negative expansive material, by the solid-state reaction method and deposited Mn_ (0.983) CoGe (0.983) CoGe / Epoxy composites were uniformly dispersed in Epoxy.The results show that only adding Mn_ (0.983) CoGe with the volume fraction of 22.5vol% The thermal conductivity of Mn_ (0.983) CoGe / Epoxy composites increases with the increasing of Mn_ (0.983) CoGe loading, for example, when the composite material In Mn_ (0.983) CoGe filled with 30vol.%, The thermal conductivity at 150K increased by nearly 3 times.In addition, we also found that, after being combined with Epoxy, due to the influence of the stress caused by Epoxy matrix, Mn_ ( 0.983) CoGe magnetic structure phase transition temperature range broadening, while hexagonal phase to the orthogonal phase conversion rate is also significantly reduced.