论文部分内容阅读
社会化推荐系统通过用户的社会属性信息能缓解推荐系统中数据稀疏性和冷启动问题,从而提高推荐系统的精度。然而大多数社会化推荐方法主要针对单一的社交网络,或对多个社交网络进行线性叠加,使得用户社会属性难以充分参与计算,因而推荐的精度有限。针对该问题,提出一种多重网络嵌入的图形神经网络模型来实现复杂多维社交网络下的推荐,该模型构建了统一的方法来融合用户-物品、用户-用户等各种关系构成的多维复杂网络,通过注意力机制聚合不同类型的多邻居对节点生成作出贡献,并将多个图神经网络进行组合,从而构建了多维社交关系下的图