论文部分内容阅读
针对高光谱遥感图像的小目标检测问题,提出了一种基于自适应参数支持向量机(SVM)的检测方法。采用主成分分析(PCA)法对高光谱遥感图像进行降维,降低数据冗余度;之后通过无监督检测方法对小目标进行快速、粗糙定位,并将该定位结果作为后验信息输入到SVM中;依据后验信息与核空间散度准则自适应确定SVM中核函数的参数,并使用SVM在核空间中寻找分离目标和背景的最佳超平面;利用该超平面将像元重新分类为背景和目标,并且迭代上述操作,得到精确且稳定的目标检测结果。大量实验结果表明,与经典RX方法、核RX方法、支持向量数据描述(SVDD)方法相比,该方法可以更有效、精确地检测出高光谱遥感图像中的小目标。