论文部分内容阅读
传统的时空上下文跟踪算法在更新目标模型时不考虑跟踪结果的有效性,故目标被长时间遮挡后,目标模型容易被错误更新且难以修正。因此,本文提出了一种基于双目标模型的改进时空上下文跟踪算法以解决错误更新问题。该算法引入一个辅助目标判别模型来评估时空上下文算法跟踪结果的有效性,并根据评估结果对目标模型进行更新。辅助模型使用目标的局部纹理信息而不是相关性信息作为特征,在目标被长时间遮挡后也能准确评估更新内容的有效性,并能在遮挡结束后修正错误更新的目标模型。在多组数据集上的实验表明,改进算法在测试数据集上的跟踪成功率为8