论文部分内容阅读
在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。
1 进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射f:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素x对应,记为f(x)=ax2+bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素x在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知f(x)=2x2+x+2,求f(x+1)
这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型Ⅱ:设f(x+1)=x2-4x+1,求f(x)
这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素x的象,其本质是求对应法则。
一般有两种方法:
①把所给表达式表示成x+1的多项式。
f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得f(x)=x2-6x+6
②变量代换:它的适应性强,对一般函数都可适用。
令t=x+1,则x=t-1∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而f(x)=x2-6x+6
2 二次函数的单调性,最值与图象
在高中阶段学习函数单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-■]及[-■,+∞)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
①y=x2+2|x-1|-1
②y=|x2-1|
③y=x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
类型Ⅳ:设f(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
求:g(t)并画出y=g(t)的图象
解:f(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1∈[t,t+1]即0≤t≤1,g(t)=-2
当t>1时,g(t)=f(t)=t2-2t-1
当t<0时,g(t)=f(t+1)=t2-2
g(t)=t2-2,(t<0)-2,(0≤t≤1)t2-2t-1,(t>1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。
3 二次函数的知识,可以准确反映学生的数学思维
类型Ⅴ:设二次函数f(x)=ax2+bx+c(a>0)方程f(x)-x=0
的两个根x1,x2满足0 (Ⅰ)当x∈(0,x1)时,证明x (Ⅱ)设函数f(x)的图象关于直线x=x0对称,证明x0<■。
解题思路:
本题要证明的是x (Ⅰ)先证明x 因为00,又a>0,因此f(x)>0,即f(x)-x>0。至此,证得x 根据韦达定理,有x1x2=■∵0f(0),所以当x∈(0,x1)时f(x) (Ⅱ)∵f(x)=ax2+bx+c=a(x+■)2+(c-■),(a>0)
函数f(x)的图象的对称轴为直线x=-■,且是唯一的一条对称轴,因此,依题意,得x0=-■,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-■,∵x2-■<0,∴x0=-■=■(x1+x2-■)<■,即x0=■。
二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以编拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。
1 进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射f:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素x对应,记为f(x)=ax2+bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素x在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知f(x)=2x2+x+2,求f(x+1)
这里不能把f(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型Ⅱ:设f(x+1)=x2-4x+1,求f(x)
这个问题理解为,已知对应法则f下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素x的象,其本质是求对应法则。
一般有两种方法:
①把所给表达式表示成x+1的多项式。
f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得f(x)=x2-6x+6
②变量代换:它的适应性强,对一般函数都可适用。
令t=x+1,则x=t-1∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而f(x)=x2-6x+6
2 二次函数的单调性,最值与图象
在高中阶段学习函数单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-■]及[-■,+∞)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
①y=x2+2|x-1|-1
②y=|x2-1|
③y=x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
类型Ⅳ:设f(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
求:g(t)并画出y=g(t)的图象
解:f(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1∈[t,t+1]即0≤t≤1,g(t)=-2
当t>1时,g(t)=f(t)=t2-2t-1
当t<0时,g(t)=f(t+1)=t2-2
g(t)=t2-2,(t<0)-2,(0≤t≤1)t2-2t-1,(t>1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。
3 二次函数的知识,可以准确反映学生的数学思维
类型Ⅴ:设二次函数f(x)=ax2+bx+c(a>0)方程f(x)-x=0
的两个根x1,x2满足0
解题思路:
本题要证明的是x
函数f(x)的图象的对称轴为直线x=-■,且是唯一的一条对称轴,因此,依题意,得x0=-■,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-■,∵x2-■<0,∴x0=-■=■(x1+x2-■)<■,即x0=■。
二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以编拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。