论文部分内容阅读
正确、高效地针对问题建立模型是应用贝叶斯网的关键,而从数据中学习贝叶斯网往往因为搜索空间庞大而效率低下.提出基于案例和规则推理的建模方法,建立领域知识库,使用框架和一阶概率逻辑表示贝叶斯网,当面对新的问题时,使用相似度和偏离度两个指标进行案例匹配,对选中的案例使用组合和剪枝技术修正,得到新问题的求解模型.整个过程以案例推理为主,并用规则推理辅助.这种方法能够复用历史案例,提高贝叶斯网建模效率.