论文部分内容阅读
利用领域本体对产品评论文本中的特征及其评价词进行抽取,并将特征评价词的情感倾向与特征所在句子的情感倾向进行特征表示,得到文本特征矩阵,在此基础上,利用K—means算法实现了文本的情感聚类。为了验证该方法的有效性,在真实汽车评论文本数据上进行实验,结果表明,基于特征的情感倾向表示的权重相比布尔权重和LDA特征权重的聚类结果,在聚类的纯度和F值上有明显提高。