论文部分内容阅读
分子对接目的之一,是找出配体和受体之间最稳定构像的结合模式,可以归为全局搜索或优化问题。本文提出的量子行为粒子群优化算法(QPSO)是1种有效的全局优化搜索算法。本文介绍QPSO算法在分子对接问题研究中的应用,并使用Autodock3.05的打分函数评价分子对接结果。结果表明,QPSO算法的QDOCK程序能够寻找出更为稳定的构像,且其收敛速度以及对接结果的精确性均比拉马克遗传算法(LGA)的Autodock3.05好。
One of the goals of molecular docking is to find out the most stable conformational pattern of binding between the ligand and the receptor that can be classified as a global search or optimization problem. The Quantum Behavior Particle Swarm Optimization (QPSO) proposed in this paper is an effective global optimization search algorithm. This paper introduces the application of QPSO algorithm in the study of molecular docking, and uses the scoring function of Autodock3.05 to evaluate the molecular docking results. The results show that the QDOCK program of QPSO algorithm can find a more stable conformation, and its convergence rate and the accuracy of docking results are better than Autodock3.05 of LAG.