论文部分内容阅读
为进一步提高大田环境下麦穗识别与检测计数的准确性,基于图像处理和深度学习技术,设计并实现了基于卷积神经网络的冬小麦麦穗检测计数系统。根据大田环境下采集的开花期冬小麦图像特点,提取麦穗、叶片、阴影3类标签图像构建数据集,研究适用于冬小麦麦穗识别的卷积神经网络结构,构建了冬小麦麦穗识别模型,并采用梯度下降法对模型进行训练;将构建的冬小麦麦穗识别模型与非极大值抑制结合,进行冬小麦麦穗计数。试验结果表明,该系统构建的冬小麦麦穗识别模型能够有效地克服大田环境下的噪声,实现麦穗的快速、准确识别,总体识别正确率达