论文部分内容阅读
本文对Rosenau-RLW方程的初边值问题进行了数值研究,提出了一个隐式拟紧致C-N差分格式,该格式很好地模拟了问题的守恒性质.通过Brouwer不动点定理,本文得到了差分解的存在性,给出了解的先验估计和误差估计,并通过离散能量法分析了该格式的稳定性、二阶收敛性和解的唯一性.数值算例表明,该格式是可行的,且相对于一般的二层格式具有更好的计算精度.