论文部分内容阅读
在多站测角的被动目标跟踪中,目标的状态与角度量测值之间存在非线性关系,现有的方法主要是对其进行线性化,但线性化过程会带来滤波精度的下降,甚至会产生滤波发散而丢失目标.无迹变换卡尔曼滤波器(Unscented Kalman Filter,UKF)通过产生采样sigma点对系统状态进行逼近,可以较好地解决这一问题.将UKF应用到多站测角被动目标跟踪问题中,并通过仿真试验证实了算法的有效性.