论文部分内容阅读
针对采用长时间序列卫星影像、结合物候特征进行农作物精细分类识别精度较低的问题,将深度学习用于无人机遥感农作物识别,提出一种基于卷积神经网络的农作物精细分类方法,利用卷积神经网络提取高分辨率遥感影像中的农作物特征,通过调整网络参数及样本光谱组合,进一步优化网络结构,得到农作物识别模型。研究结果表明:卷积神经网络能够有效地提取影像中的农作物信息,实现农作物精细分类。除地块边缘因农作物种植稀疏、混杂而产生少许错分现象外,其他区域均得到较好的分类效果。经训练优化后的模型对3种农作物总体分类精度可达97. 7