论文部分内容阅读
医疗问题诉求分类属于文本分类,是自然语言处理中的基础任务。该文提出一种基于强化学习的方法对医疗问题诉求进行分类。首先,通过强化学习自动识别出医疗问题中的关键词,并且对医疗问题中的关键词和非关键词赋予不同的值构成一个向量;其次,利用该向量作为attention机制的权重向量,对Bi-LSTM模型生成的隐含层状态序列加权求和得到问题表示;最后通过Softmax分类器对问题表示进行分类。实验结果表明,该方法比基于Bi-LSTM模型的分类结果准确率提高1.49%。