论文部分内容阅读
准确的滑坡易发性评价结果是滑坡风险评价的重要基础.为提升滑坡易发性评价精度,以三峡库区龙驹坝为例,选取坡度等10个因子构建滑坡易发性评价指标体系,应用频率比方法定量分析各指标与滑坡发育的关系.在此基础上,随机选取70%/30%的滑坡数据作为训练/测试样本,应用径向基神经网络和Adaboost集成学习耦合模型(RBNN-Adaboost),径向基神经网络和逻辑回归模型分别开展易发性评价.结果显示:水系距离、坡度等是滑坡发育的主控因素;RBNN-Adaboost耦合模型的预测精度最高(0.820),优于