论文部分内容阅读
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities,including particle acceleration, inertial confinement fusion and radiation therapy, and for secondary source generation(x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide.The definition of ‘petawatt class’ in this context is a laser that delivers >200 TW.
The use of ultra-high intensity laser beams to achieve extreme material states in the laboratory has become almost routine with the development of the petawatt laser. Petawatt class lasers have been constructed for specific research activities, including particle acceleration, inertial confinement fusion and radiation therapy , and for secondary source generation (x-rays, electrons, protons, neutrons and ions). They are also now routinely coupled, and synchronized, to other large scale scale facilities including megajoule scale lasers, ion and electron accelerators, x-ray sources and z-pinches. The authors of this paper have tried to compile a comprehensive overview of the current status of petawatt class lasers worldwide. The definition of ’petawatt class’ in this context is a laser that delivers> 200 TW.