论文部分内容阅读
传统的KNN算法的时间复杂度与样本规模成正比,大规模或高维数据会降低其分类效率。为此,提出一种改进的KNN快速分类算法。该算法以固定半径长度构造超球为原则,为训练样本集构造多个包围超球。根据各个超球内包含的训练样本集的重心位置与测试样本的位置关系可以快速搜索测试样本的k个最近邻超球,然后以k个最近邻超球内的训练样本集构造新的训练样本集。在新的训练样本集中求测试样本的k个最近邻,从而获得该测试样本的类别。实验表明,改进的KNN快速分类算法的分类准确率得到一定程度的提高、运行效率明显提升。