论文部分内容阅读
提出一种基于概率数据关联和改进粒子滤波的多目标跟踪算法。该方法在分析关联区域内有效量测基础上,利用量测与目标预测位置的统计距离计算关联概率;然后,对粒子滤波器进行改进,将目标的最新量测和状态的高斯逼近组合在一起,对每个粒子采用类似于卡尔曼滤波的方式产生高斯建议分布,以此提高目标状态的估计精度;最后,将所有有效量测的估计结果按照关联概率进行加权,从而实现多目标跟踪。仿真结果表明,该算法用于复杂环境下的多目标跟踪精度较高,不仅降低了关联概率的计算难度,而且可以准确地进行数据关联,具有一定的工程应用价值。