论文部分内容阅读
摘要:上市公司财务危机预警的实证研究,在我国才刚刚起步。从研究方法和研究角度看,都与国外的相关研究存在着一定的差异,主要表现在资本市场的成熟程度和特性的区别,以及研究方法的不完善。本文拟通过对国内外该研究领城经典文献的回顾,紧扣焦点问题对已有研完成果进行总结和理论评价,并对我国开展该项研究的方向和趋势提出建设性的思路。
关键词:财务危机;预警模型;实证研究
一、引言
随着资本市场的不断发展和完善,对上市公司财务危机预警进行研究一直是国内外学术界研究的热点问题之一。财务危机预警是以现有的财务比率为基础,通过设计并观察一些敏感性财务预警指标的变化,建立数学模型来预测企业财务危机发生的可能性,这样就能在很大程度上帮助上市公司防范和化解财务危机。然而,由于种种原因,财务危机预警系统在我国上市公司中尚未得到广泛应用。
二、财务危机预警模型的发展及分类
1、单变量模型
单变量模型,即一元判别模式,它运用单一的财务指标来预测企业的财务危机。W.H.Beaver(1966),他最早将统计方法应用与财务指标结合起来,选择了29个能够代表企业财务状况的指标,从1954年到1964年之间他定义的财务危机企业中,挑选了79家,并选择了产业相同、资产规模相近的另外79家非财务危机企业作为配对样本,他对这79家财务危机企业和79家非财务危机企业前五年的29个财务指标进行了立面分析,最后得出结论,认为现会流量/负债总额能够最好地判定公司的财务状况(误判率最低,破产前一年的预测币确率町以达到87%),其次是资产负债率和“净利润/总资产”比率,并且离财务危机出现同越近,误判率越低,预见性越强。
2、多元线性回归模型
多元线性判别模型,即通过线性回归技术来构建能够以最小的分类错误率对样本公司进行划分的多元线性方程。比较著名的有Altman的Z分数模型以及后来E.Altman、R.Haldeman.和P.Narauaman的ZETA模型。
2.1、Z分数模型
Altman(1968)提出了Z分数模型。该模型是Altman根据美国股票市场的实际情况,经过上千次的实证分析,以33家破产公司及33家配对公司作为样本,使用选择的5个比率拟合出了一个多元线性方程,建立了Z分数模型,首次采用了多变量来预测企业的财务危机。
模型如下:
2.2、ZETA模型
1977年Altman等人将预测模型Z分数模型从单纯的制造业中解放出来,加入了非上市公司和各个行业,建立了新的、更具有准确性的企业财务危机预测模型一zETA模型,它包括了经营收益/总资产、收益稳定性、利息保障倍数、留存收益/总资产、流动比率、普通股权益/总资本和普通股权益/总资产这7项比率。Altman等经过对样本的分析,发现用ZETA模型预测五年和一年之后的财务危机企业的精确度分别为70%和91%。并且通过对相同样本进行预测分析,比较发现,ZETA模型的预测准确度要明显优于Z分数预测模型。
2.3、F分数模型
由于Z分数模型没有考虑对企业财务状况影响重大的现会流量因素,导致其财务解释和预测的效果大打折扣。为弥补这一缺陷,我国学者对Z分数模型加以改进,建立了F分数模型(周首华、杨济华,1996)在F分数模型中加入了现金流量的预测变量,其模型如下:
3、多元逻辑回归
多元逻辑回归(二项Logistic回归)的统计方法都是建立在累积概率函数的基础上,一般运用极大似然估计法来进行判定,而不需要满足自变量服从多元正念分布和两组问协方差相等的条件。他们是解决O一1回归问题的行之有效的方法。
Martin(1977)年在财务困境预测中首次采用了逻辑回归模型,从25个财务指标中选取了8个作为变量建立了回归模型,结果发现逻辑回归的预测效果要好于前面两种模型。0hlson(1980)以1970年至1976年问105家失败公司为样本,运用了条件逻辑模型来建立财务预警模型,研究结果显著。
三、研究不足
由于我国的理论研究相对滞后,市场体制还不完善,目前企业财务预警模型构建存在的问题有如下几点:
第一,预警变量选择缺乏理论支持。
第二,样本选取范围和样本时间区间存在局限。
第三,预警模型缺乏非财务因素支持。
绝大部分的研究都以财务会计报表数据为基础,以各种财务指标为变量来建立预警模型。运用财务指标建立的财务预警模型虽然能较直观地反映企业的综合财务状况,但从我国企业的情况来看,不能仅采用财务指标作为判别依据。
参考文献
[1]Wi l l i am H. Baever . Fi nanci al as Pr edi ct or s of Fai l ur e[ J] . Journal of Account i ng Resear ch,1966. 5.
[2]AICPA.Improving Business ReD0rtS_— A Customer Fo~sEM3.AICPA Iuc,1994.
[3]Sorte~An"Event"Approach tO Basic Accounting n-e0ry[J].The Acc0unthlg Review.januaryt 1969
[4]王 强:企业失败定义研究[J].北京工业大学学报,2002.Vol.2 No.1
[5]谷 祺 刘淑莲:财务危机企业投资行为分析与决策[J].会计研究,1999.11
[6]赵爱玲:企业财务危机的识别与分析[J].财经理论与实践,2000
[7]吴世农,卢贤义.我国上市公司财务困境的预测模型研究[ 经济研究,2oo1,(6).
[8]陈静.上市公司财务恶化预测的实证分析[J].会计研究,1999,(4).
[9]金忻,王大伟.上市公司财务困境的回归预测[JJ.价值工程,2005,(6).
关键词:财务危机;预警模型;实证研究
一、引言
随着资本市场的不断发展和完善,对上市公司财务危机预警进行研究一直是国内外学术界研究的热点问题之一。财务危机预警是以现有的财务比率为基础,通过设计并观察一些敏感性财务预警指标的变化,建立数学模型来预测企业财务危机发生的可能性,这样就能在很大程度上帮助上市公司防范和化解财务危机。然而,由于种种原因,财务危机预警系统在我国上市公司中尚未得到广泛应用。
二、财务危机预警模型的发展及分类
1、单变量模型
单变量模型,即一元判别模式,它运用单一的财务指标来预测企业的财务危机。W.H.Beaver(1966),他最早将统计方法应用与财务指标结合起来,选择了29个能够代表企业财务状况的指标,从1954年到1964年之间他定义的财务危机企业中,挑选了79家,并选择了产业相同、资产规模相近的另外79家非财务危机企业作为配对样本,他对这79家财务危机企业和79家非财务危机企业前五年的29个财务指标进行了立面分析,最后得出结论,认为现会流量/负债总额能够最好地判定公司的财务状况(误判率最低,破产前一年的预测币确率町以达到87%),其次是资产负债率和“净利润/总资产”比率,并且离财务危机出现同越近,误判率越低,预见性越强。
2、多元线性回归模型
多元线性判别模型,即通过线性回归技术来构建能够以最小的分类错误率对样本公司进行划分的多元线性方程。比较著名的有Altman的Z分数模型以及后来E.Altman、R.Haldeman.和P.Narauaman的ZETA模型。
2.1、Z分数模型
Altman(1968)提出了Z分数模型。该模型是Altman根据美国股票市场的实际情况,经过上千次的实证分析,以33家破产公司及33家配对公司作为样本,使用选择的5个比率拟合出了一个多元线性方程,建立了Z分数模型,首次采用了多变量来预测企业的财务危机。
模型如下:
2.2、ZETA模型
1977年Altman等人将预测模型Z分数模型从单纯的制造业中解放出来,加入了非上市公司和各个行业,建立了新的、更具有准确性的企业财务危机预测模型一zETA模型,它包括了经营收益/总资产、收益稳定性、利息保障倍数、留存收益/总资产、流动比率、普通股权益/总资本和普通股权益/总资产这7项比率。Altman等经过对样本的分析,发现用ZETA模型预测五年和一年之后的财务危机企业的精确度分别为70%和91%。并且通过对相同样本进行预测分析,比较发现,ZETA模型的预测准确度要明显优于Z分数预测模型。
2.3、F分数模型
由于Z分数模型没有考虑对企业财务状况影响重大的现会流量因素,导致其财务解释和预测的效果大打折扣。为弥补这一缺陷,我国学者对Z分数模型加以改进,建立了F分数模型(周首华、杨济华,1996)在F分数模型中加入了现金流量的预测变量,其模型如下:
3、多元逻辑回归
多元逻辑回归(二项Logistic回归)的统计方法都是建立在累积概率函数的基础上,一般运用极大似然估计法来进行判定,而不需要满足自变量服从多元正念分布和两组问协方差相等的条件。他们是解决O一1回归问题的行之有效的方法。
Martin(1977)年在财务困境预测中首次采用了逻辑回归模型,从25个财务指标中选取了8个作为变量建立了回归模型,结果发现逻辑回归的预测效果要好于前面两种模型。0hlson(1980)以1970年至1976年问105家失败公司为样本,运用了条件逻辑模型来建立财务预警模型,研究结果显著。
三、研究不足
由于我国的理论研究相对滞后,市场体制还不完善,目前企业财务预警模型构建存在的问题有如下几点:
第一,预警变量选择缺乏理论支持。
第二,样本选取范围和样本时间区间存在局限。
第三,预警模型缺乏非财务因素支持。
绝大部分的研究都以财务会计报表数据为基础,以各种财务指标为变量来建立预警模型。运用财务指标建立的财务预警模型虽然能较直观地反映企业的综合财务状况,但从我国企业的情况来看,不能仅采用财务指标作为判别依据。
参考文献
[1]Wi l l i am H. Baever . Fi nanci al as Pr edi ct or s of Fai l ur e[ J] . Journal of Account i ng Resear ch,1966. 5.
[2]AICPA.Improving Business ReD0rtS_— A Customer Fo~sEM3.AICPA Iuc,1994.
[3]Sorte~An"Event"Approach tO Basic Accounting n-e0ry[J].The Acc0unthlg Review.januaryt 1969
[4]王 强:企业失败定义研究[J].北京工业大学学报,2002.Vol.2 No.1
[5]谷 祺 刘淑莲:财务危机企业投资行为分析与决策[J].会计研究,1999.11
[6]赵爱玲:企业财务危机的识别与分析[J].财经理论与实践,2000
[7]吴世农,卢贤义.我国上市公司财务困境的预测模型研究[ 经济研究,2oo1,(6).
[8]陈静.上市公司财务恶化预测的实证分析[J].会计研究,1999,(4).
[9]金忻,王大伟.上市公司财务困境的回归预测[JJ.价值工程,2005,(6).