论文部分内容阅读
土地覆盖的短期时空变化模式研究,对土地覆盖的快速、动态监测具有重要意义,也是遥感研究的新热点。本文利用2000-2001年的时间序列Radarsat图像,采用功率谱分析方法,对土地覆盖的短期时-空变化的周期特征进行了分析,由此建立了基于时间序列影像分析的神经网络预测模型,从植被主要生长季节的时间序列雷达卫星影像获取训练样本,对研究区域的典型土地覆盖的短期动态变化过程进行了学习。学习后的模型能够利用多个时间序列的Radarsat影像对下一时刻的影像进行模拟,并进一步检测变化。在模拟结果基础上,定义相对变化距