论文部分内容阅读
故障识别是确定故障类型的重要方式。传统方法不能直观识别故障类型,忽略了水平和垂直方向的信息之间的关系,很难准确提取故障特征。二维全息谱融合了水平和垂直方向的振动信息,反映了一个支承面上转子的振动情况。但在某些情况下不能准确识别主要故障,无法通过分倍频、工频和高倍频的椭圆信息确定故障类型。选择流形学习的 LE 算法与全息谱技术结合,弥补了二维全息谱算法的缺陷,提高了流形学习处理信号的优越性。通过实验验证了方法的准确性。